Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38259351

RESUMO

Vision is widely understood as an inference problem. However, two contrasting conceptions of the inference process have each been influential in research on biological vision as well as the engineering of machine vision. The first emphasizes bottom-up signal flow, describing vision as a largely feedforward, discriminative inference process that filters and transforms the visual information to remove irrelevant variation and represent behaviorally relevant information in a format suitable for downstream functions of cognition and behavioral control. In this conception, vision is driven by the sensory data, and perception is direct because the processing proceeds from the data to the latent variables of interest. The notion of "inference" in this conception is that of the engineering literature on neural networks, where feedforward convolutional neural networks processing images are said to perform inference. The alternative conception is that of vision as an inference process in Helmholtz's sense, where the sensory evidence is evaluated in the context of a generative model of the causal processes that give rise to it. In this conception, vision inverts a generative model through an interrogation of the sensory evidence in a process often thought to involve top-down predictions of sensory data to evaluate the likelihood of alternative hypotheses. The authors include scientists rooted in roughly equal numbers in each of the conceptions and motivated to overcome what might be a false dichotomy between them and engage the other perspective in the realm of theory and experiment. The primate brain employs an unknown algorithm that may combine the advantages of both conceptions. We explain and clarify the terminology, review the key empirical evidence, and propose an empirical research program that transcends the dichotomy and sets the stage for revealing the mysterious hybrid algorithm of primate vision.

2.
Nat Neurosci ; 26(12): 2063-2072, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996525

RESUMO

The Bayesian brain hypothesis is one of the most influential ideas in neuroscience. However, unstated differences in how Bayesian ideas are operationalized make it difficult to draw general conclusions about how Bayesian computations map onto neural circuits. Here, we identify one such unstated difference: some theories ask how neural circuits could recover information about the world from sensory neural activity (Bayesian decoding), whereas others ask how neural circuits could implement inference in an internal model (Bayesian encoding). These two approaches require profoundly different assumptions and lead to different interpretations of empirical data. We contrast them in terms of motivations, empirical support and relationship to neural data. We also use a simple model to argue that encoding and decoding models are complementary rather than competing. Appreciating the distinction between Bayesian encoding and Bayesian decoding will help to organize future work and enable stronger empirical tests about the nature of inference in the brain.


Assuntos
Modelos Neurológicos , Neurociências , Teorema de Bayes , Encéfalo
3.
bioRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38014023

RESUMO

Since motion can only be defined relative to a reference frame, which reference frame guides perception? A century of psychophysical studies has produced conflicting evidence: retinotopic, egocentric, world-centric, or even object-centric. We introduce a hierarchical Bayesian model mapping retinal velocities to perceived velocities. Our model mirrors the structure in the world, in which visual elements move within causally connected reference frames. Friction renders velocities in these reference frames mostly stationary, formalized by an additional delta component (at zero) in the prior. Inverting this model automatically segments visual inputs into groups, groups into supergroups, etc. and "perceives" motion in the appropriate reference frame. Critical model predictions are supported by two new experiments, and fitting our model to the data allows us to infer the subjective set of reference frames used by individual observers. Our model provides a quantitative normative justification for key Gestalt principles providing inspiration for building better models of visual processing in general.

4.
J Vis ; 23(11): 59, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733519

RESUMO

Perceptual decision making (PDM) has been studied using two approaches. Threshold measurement is predominant used in psychophysics, while reaction times (RT) with associated models have been used to estimate components of PDM (i.e., drift rate). To test if these two approaches reflect overlapping mechanisms, we conducted 3 experiments: a motion, a static orientation, and a dynamic orientation task. DT is the shortest stimulus presentation time sufficient to make accurate perceptual decisions. RTs and choices were fitted by a drift diffusion model (DDM). We expected a close relationship between DTs and drift rates, allowing us to accurately predict DTs from RT. In the motion task, we found a close relation between the empirical DTs and the DTs predicted by the DDM. Surprisingly, in the static task, there was little correlation between the two; DTs, improved monotonically with higher contrast, but drift rates saturated at 6%. We hypothesize that this mismatch is due to the information being available immediately in the static task, without needing to accumulate new evidence. Thus, we developed a novel dynamic orientation task that mimics the dynamic nature of the motion task and found a similar relation between DTs and drift rates. In summary, we show a close link between DTs and drift rate for the two dynamic tasks. This result supports the conceptualization of drift rate as a proxy for perceptual sensitivity but only for task where new information becomes available over time.


Assuntos
Formação de Conceito , Humanos , Movimento (Física) , Psicofísica , Tempo de Reação
5.
J Neurophysiol ; 129(5): 1021-1044, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947884

RESUMO

A central goal of systems neuroscience is to understand how populations of sensory neurons encode and relay information to the rest of the brain. Three key quantities of interest are 1) how mean neural activity depends on the stimulus (sensitivity), 2) how neural activity (co)varies around the mean (noise correlations), and 3) how predictive these variations are of the subject's behavior (choice probability). Previous empirical work suggests that both choice probability and noise correlations are affected by task training, with decision-related information fed back to sensory areas and aligned to neural sensitivity on a task-by-task basis. We used Utah arrays to record activity from populations of primary visual cortex (V1) neurons from two macaque monkeys that were trained to switch between two coarse orientation-discrimination tasks. Surprisingly, we find no evidence for significant trial-by-trial changes in noise covariance between tasks, nor do we find a consistent relationship between neural sensitivity and choice probability, despite recording from well-tuned task-sensitive neurons, many of which were histologically confirmed to be in supragranular V1, and despite behavioral evidence that the monkeys switched their strategy between tasks. Thus our data at best provide weak support for the hypothesis that trial-by-trial task-switching induces changes to noise correlations and choice probabilities in V1. However, our data agree with a recent finding of a single "choice axis" across tasks. They also raise the intriguing possibility that choice-related signals in early sensory areas are less indicative of task learning per se and instead reflect perceptual learning that occurs in highly overtrained subjects.NEW & NOTEWORTHY Converging evidence suggests that decision processes affect sensory neural activity, and this has informed numerous theories of neural processing. We set out to replicate and extend previous results on decision-related information and noise correlations in V1 of macaque monkeys. However, in our data, we find little evidence for a number of expected effects. Our null results therefore call attention to differences in task training, stimulus design, recording, and analysis techniques between our and prior studies.


Assuntos
Córtex Visual , Animais , Córtex Visual/fisiologia , Macaca mulatta/fisiologia , Aprendizagem , Neurônios/fisiologia , Neurônios Aferentes
6.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993321

RESUMO

A key role of sensory processing is integrating information across space. Neuronal responses in the visual system are influenced by both local features in the receptive field center and contextual information from the surround. While center-surround interactions have been extensively studied using simple stimuli like gratings, investigating these interactions with more complex, ecologically-relevant stimuli is challenging due to the high dimensionality of the stimulus space. We used large-scale neuronal recordings in mouse primary visual cortex to train convolutional neural network (CNN) models that accurately predicted center-surround interactions for natural stimuli. These models enabled us to synthesize surround stimuli that strongly suppressed or enhanced neuronal responses to the optimal center stimulus, as confirmed by in vivo experiments. In contrast to the common notion that congruent center and surround stimuli are suppressive, we found that excitatory surrounds appeared to complete spatial patterns in the center, while inhibitory surrounds disrupted them. We quantified this effect by demonstrating that CNN-optimized excitatory surround images have strong similarity in neuronal response space with surround images generated by extrapolating the statistical properties of the center, and with patches of natural scenes, which are known to exhibit high spatial correlations. Our findings cannot be explained by theories like redundancy reduction or predictive coding previously linked to contextual modulation in visual cortex. Instead, we demonstrated that a hierarchical probabilistic model incorporating Bayesian inference, and modulating neuronal responses based on prior knowledge of natural scene statistics, can explain our empirical results. We replicated these center-surround effects in the multi-area functional connectomics MICrONS dataset using natural movies as visual stimuli, which opens the way towards understanding circuit level mechanism, such as the contributions of lateral and feedback recurrent connections. Our data-driven modeling approach provides a new understanding of the role of contextual interactions in sensory processing and can be adapted across brain areas, sensory modalities, and species.

7.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579424

RESUMO

Autism spectrum disorder (ASD) is characterized by a panoply of social, communicative, and sensory anomalies. As such, a central goal of computational psychiatry is to ascribe the heterogenous phenotypes observed in ASD to a limited set of canonical computations that may have gone awry in the disorder. Here, we posit causal inference - the process of inferring a causal structure linking sensory signals to hidden world causes - as one such computation. We show that audio-visual integration is intact in ASD and in line with optimal models of cue combination, yet multisensory behavior is anomalous in ASD because this group operates under an internal model favoring integration (vs. segregation). Paradoxically, during explicit reports of common cause across spatial or temporal disparities, individuals with ASD were less and not more likely to report common cause, particularly at small cue disparities. Formal model fitting revealed differences in both the prior probability for common cause (p-common) and choice biases, which are dissociable in implicit but not explicit causal inference tasks. Together, this pattern of results suggests (i) different internal models in attributing world causes to sensory signals in ASD relative to neurotypical individuals given identical sensory cues, and (ii) the presence of an explicit compensatory mechanism in ASD, with these individuals putatively having learned to compensate for their bias to integrate in explicit reports.


Assuntos
Transtorno do Espectro Autista , Causalidade , Sinais (Psicologia) , Humanos
8.
PLoS Comput Biol ; 18(3): e1009557, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259152

RESUMO

Perception is often characterized computationally as an inference process in which uncertain or ambiguous sensory inputs are combined with prior expectations. Although behavioral studies have shown that observers can change their prior expectations in the context of a task, robust neural signatures of task-specific priors have been elusive. Here, we analytically derive such signatures under the general assumption that the responses of sensory neurons encode posterior beliefs that combine sensory inputs with task-specific expectations. Specifically, we derive predictions for the task-dependence of correlated neural variability and decision-related signals in sensory neurons. The qualitative aspects of our results are parameter-free and specific to the statistics of each task. The predictions for correlated variability also differ from predictions of classic feedforward models of sensory processing and are therefore a strong test of theories of hierarchical Bayesian inference in the brain. Importantly, we find that Bayesian learning predicts an increase in so-called "differential correlations" as the observer's internal model learns the stimulus distribution, and the observer's behavioral performance improves. This stands in contrast to classic feedforward encoding/decoding models of sensory processing, since such correlations are fundamentally information-limiting. We find support for our predictions in data from existing neurophysiological studies across a variety of tasks and brain areas. Finally, we show in simulation how measurements of sensory neural responses can reveal information about a subject's internal beliefs about the task. Taken together, our results reinterpret task-dependent sources of neural covariability as signatures of Bayesian inference and provide new insights into their cause and their function.


Assuntos
Aprendizagem , Sensação , Teorema de Bayes , Encéfalo , Simulação por Computador , Aprendizagem/fisiologia , Modelos Neurológicos
9.
PLoS Comput Biol ; 17(11): e1009517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843452

RESUMO

Making good decisions requires updating beliefs according to new evidence. This is a dynamical process that is prone to biases: in some cases, beliefs become entrenched and resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over time and rely primarily on later evidence (leading to recency effects). How and why either type of bias dominates in a given context is an important open question. Here, we study this question in classic perceptual decision-making tasks, where, puzzlingly, previous empirical studies differ in the kinds of biases they observe, ranging from primacy to recency, despite seemingly equivalent tasks. We present a new model, based on hierarchical approximate inference and derived from normative principles, that not only explains both primacy and recency effects in existing studies, but also predicts how the type of bias should depend on the statistics of stimuli in a given task. We verify this prediction in a novel visual discrimination task with human observers, finding that each observer's temporal bias changed as the result of changing the key stimulus statistics identified by our model. The key dynamic that leads to a primacy bias in our model is an overweighting of new sensory information that agrees with the observer's existing belief-a type of 'confirmation bias'. By fitting an extended drift-diffusion model to our data we rule out an alternative explanation for primacy effects due to bounded integration. Taken together, our results resolve a major discrepancy among existing perceptual decision-making studies, and suggest that a key source of bias in human decision-making is approximate hierarchical inference.


Assuntos
Viés , Tomada de Decisões , Percepção , Humanos , Modelos Psicológicos
10.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825683

RESUMO

Understanding perceptual decision-making requires linking sensory neural responses to behavioral choices. In two-choice tasks, activity-choice covariations are commonly quantified with a single measure of choice probability (CP), without characterizing their changes across stimulus levels. We provide theoretical conditions for stimulus dependencies of activity-choice covariations. Assuming a general decision-threshold model, which comprises both feedforward and feedback processing and allows for a stimulus-modulated neural population covariance, we analytically predict a very general and previously unreported stimulus dependence of CPs. We develop new tools, including refined analyses of CPs and generalized linear models with stimulus-choice interactions, which accurately assess the stimulus- or choice-driven signals of each neuron, characterizing stimulus-dependent patterns of choice-related signals. With these tools, we analyze CPs of macaque MT neurons during a motion discrimination task. Our analysis provides preliminary empirical evidence for the promise of studying stimulus dependencies of choice-related signals, encouraging further assessment in wider data sets.


Assuntos
Comportamento Animal , Encéfalo/fisiologia , Comportamento de Escolha , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Retroalimentação Psicológica , Macaca , Modelos Animais , Modelos Neurológicos , Estimulação Luminosa , Detecção de Sinal Psicológico , Vias Visuais/fisiologia , Percepção Visual
11.
PLoS One ; 14(9): e0215417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498804

RESUMO

In order to survive and function in the world, we must understand the content of our environment. This requires us to gather and parse complex, sometimes conflicting, information. Yet, the brain is capable of translating sensory stimuli from disparate modalities into a cohesive and accurate percept with little conscious effort. Previous studies of multisensory integration have suggested that the brain's integration of cues is well-approximated by an ideal observer implementing Bayesian causal inference. However, behavioral data from tasks that include only one stimulus in each modality fail to capture what is in nature a complex process. Here we employed an auditory spatial discrimination task in which listeners were asked to determine on which side they heard one of two concurrently presented sounds. We compared two visual conditions in which task-uninformative shapes were presented in the center of the screen, or spatially aligned with the auditory stimuli. We found that performance on the auditory task improved when the visual stimuli were spatially aligned with the auditory stimuli-even though the shapes provided no information about which side the auditory target was on. We also demonstrate that a model of a Bayesian ideal observer performing causal inference cannot explain this improvement, demonstrating that humans deviate systematically from the ideal observer model.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Reconhecimento Fisiológico de Modelo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Estimulação Acústica , Adulto , Atenção/fisiologia , Teorema de Bayes , Sinais (Psicologia) , Feminino , Lateralidade Funcional , Humanos , Masculino , Estimulação Luminosa , Psicofísica/métodos , Tempo de Reação/fisiologia
12.
J Neurosci ; 38(41): 8874-8888, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30171092

RESUMO

During perceptual decisions, subjects often rely more strongly on early, rather than late, sensory evidence, even in tasks when both are equally informative about the correct decision. This early psychophysical weighting has been explained by an integration-to-bound decision process, in which the stimulus is ignored after the accumulated evidence reaches a certain bound, or confidence level. Here, we derive predictions about how the average temporal weighting of the evidence depends on a subject's decision confidence in this model. To test these predictions empirically, we devised a method to infer decision confidence from pupil size in 2 male monkeys performing a disparity discrimination task. Our animals' data confirmed the integration-to-bound predictions, with different internal decision bounds and different levels of correlation between pupil size and decision confidence accounting for differences between animals. However, the data were less compatible with two alternative accounts for early psychophysical weighting: attractor dynamics either within the decision area or due to feedback to sensory areas, or a feedforward account due to neuronal response adaptation. This approach also opens the door to using confidence more broadly when studying the neural basis of decision making.SIGNIFICANCE STATEMENT An animal's ability to adjust decisions based on its level of confidence, sometimes referred to as "metacognition," has generated substantial interest in neuroscience. Here, we show how measurements of pupil diameter in macaques can be used to infer their confidence. This technique opens the door to more neurophysiological studies of confidence because it eliminates the need for training on behavioral paradigms to evaluate confidence. We then use this technique to test predictions from competing explanations of why subjects in perceptual decision making often rely more strongly on early evidence: the way in which the strength of this effect should depend on a subject's decision confidence. We find that a bounded decision formation process best explains our empirical data.


Assuntos
Tomada de Decisões/fisiologia , Modelos Neurológicos , Pupila/fisiologia , Percepção Visual/fisiologia , Animais , Nível de Alerta , Discriminação Psicológica/fisiologia , Macaca mulatta , Masculino , Modelos Psicológicos , Psicofísica
13.
Nat Neurosci ; 21(4): 598-606, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483663

RESUMO

The variable responses of sensory neurons tend to be weakly correlated (spike-count correlation, rsc). This is widely thought to reflect noise in shared afferents, in which case rsc can limit the reliability of sensory coding. However, it could also be due to feedback from higher-order brain regions. Currently, the relative contributions of these sources are unknown. We addressed this by recording from populations of V1 neurons in macaques performing different discrimination tasks involving the same visual input. We found that the structure of rsc (the way rsc varied with neuronal stimulus preference) changed systematically with task instruction. Therefore, even at the earliest stage in the cortical visual hierarchy, rsc structure during task performance primarily reflects feedback dynamics. Consequently, previous proposals for how rsc constrains sensory processing need not apply. Furthermore, we show that correlations between the activity of single neurons and choice depend on feedback engaged by the task.


Assuntos
Retroalimentação Sensorial/fisiologia , Orientação/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Discriminação Psicológica/fisiologia , Macaca mulatta , Estimulação Luminosa , Psicometria , Vias Visuais/fisiologia
14.
Curr Opin Neurobiol ; 46: 84-89, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28841439

RESUMO

The concept of a tuning curve has been central for our understanding of how the responses of cortical neurons depend on external stimuli. Here, we describe how the influence of unobserved internal variables on sensory responses, in particular correlated neural variability, can be understood in a similar framework. We suggest that this will lead to deeper insights into the relationship between stimulus, sensory responses, and behavior. We review related recent work and discuss its implication for distinguishing feedforward from feedback influences on sensory responses, and for the information contained in those responses.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Células Receptoras Sensoriais/fisiologia , Animais , Humanos
15.
Neuron ; 90(3): 649-60, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27146267

RESUMO

We address two main challenges facing systems neuroscience today: understanding the nature and function of cortical feedback between sensory areas and of correlated variability. Starting from the old idea of perception as probabilistic inference, we show how to use knowledge of the psychophysical task to make testable predictions for the influence of feedback signals on early sensory representations. Applying our framework to a two-alternative forced choice task paradigm, we can explain multiple empirical findings that have been hard to account for by the traditional feedforward model of sensory processing, including the task dependence of neural response correlations and the diverging time courses of choice probabilities and psychophysical kernels. Our model makes new predictions and characterizes a component of correlated variability that represents task-related information rather than performance-degrading noise. It demonstrates a normative way to integrate sensory and cognitive components into physiologically testable models of perceptual decision-making.


Assuntos
Comportamento de Escolha/fisiologia , Cognição/fisiologia , Tomada de Decisões/fisiologia , Percepção/fisiologia , Desempenho Psicomotor/fisiologia , Células Receptoras Sensoriais/fisiologia , Córtex Cerebral/fisiologia , Humanos , Modelos Neurológicos
16.
Elife ; 52016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27228283

RESUMO

In theory, sensory perception should be more accurate when more neurons contribute to the representation of a stimulus. However, psychophysical experiments that use larger stimuli to activate larger pools of neurons sometimes report impoverished perceptual performance. To determine the neural mechanisms underlying these paradoxical findings, we trained monkeys to discriminate the direction of motion of visual stimuli that varied in size across trials, while simultaneously recording from populations of motion-sensitive neurons in cortical area MT. We used the resulting data to constrain a computational model that explained the behavioral data as an interaction of three main mechanisms: noise correlations, which prevented stimulus information from growing with stimulus size; neural surround suppression, which decreased sensitivity for large stimuli; and a read-out strategy that emphasized neurons with receptive fields near the stimulus center. These results suggest that paradoxical percepts reflect tradeoffs between sensitivity and noise in neuronal populations.


Assuntos
Percepção de Movimento , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Simulação por Computador , Feminino , Macaca mulatta , Modelos Neurológicos
17.
Neuron ; 87(1): 208-19, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26139374

RESUMO

The activity of individual sensory neurons can be predictive of an animal's choices. These decision signals arise from network properties dependent on feedforward and feedback inputs; however, the relative contributions of these inputs are poorly understood. We determined the role of feedforward pathways to decision signals in MT by recording neuronal activity while monkeys performed motion and depth tasks. During each session, we reversibly inactivated V2 and V3, which provide feedforward input to MT that conveys more information about depth than motion. We thus monitored the choice-related activity of the same neuron both before and during V2/V3 inactivation. During inactivation, MT neurons became less predictive of decisions for the depth task but not the motion task, indicating that a feedforward pathway that gives rise to tuning preferences also contributes to decision signals. We show that our data are consistent with V2/V3 input conferring structured noise correlations onto the MT population.


Assuntos
Comportamento de Escolha/fisiologia , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Percepção de Profundidade , Macaca mulatta , Recompensa , Lobo Temporal/citologia , Campos Visuais , Vias Visuais
18.
Nat Neurosci ; 16(2): 235-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23313912

RESUMO

The activity of cortical neurons in sensory areas covaries with perceptual decisions, a relationship that is often quantified by choice probabilities. Although choice probabilities have been measured extensively, their interpretation has remained fraught with difficulty. We derive the mathematical relationship between choice probabilities, read-out weights and correlated variability in the standard neural decision-making model. Our solution allowed us to prove and generalize earlier observations on the basis of numerical simulations and to derive new predictions. Notably, our results indicate how the read-out weight profile, or decoding strategy, can be inferred from experimentally measurable quantities. Furthermore, we developed a test to decide whether the decoding weights of individual neurons are optimal for the task, even without knowing the underlying correlations. We confirmed the practicality of our approach using simulated data from a realistic population model. Thus, our findings provide a theoretical foundation for a growing body of experimental results on choice probabilities and correlations.


Assuntos
Comportamento de Escolha/fisiologia , Neurônios/fisiologia , Probabilidade , Estatística como Assunto , Animais , Simulação por Computador , Humanos , Modelos Neurológicos , Dinâmica não Linear , Fatores de Tempo
19.
J Neurosci ; 31(22): 8295-305, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632950

RESUMO

Neurons encode the depth in stereoscopic images by combining the signals from the receptive fields in the two eyes. Local variations in single images can activate neurons that do not signal the correct disparity (false matches), giving rise to the stereo correspondence problem. We used binocular white-noise stimuli to decompose the responses of monkey primary visual cortex V1 neurons into the elements of a linear-nonlinear model (via spike-triggered covariance analysis). In our population of disparity-selective neurons, we find both excitatory and suppressive elements in many of the neurons. Their binocular receptive fields were aligned in a specific push-pull manner for disparity. We demonstrate that this arrangement reduces the responses to false matches but preserves the responses to true matches. The responses of the cells to the noise stimuli were well explained by a linear summation of the elements, followed by a nonlinearity. This model also explained the shape of independently measured disparity-tuning curves, although it overestimated the response magnitude. This study constitutes the first direct physiological evidence for the contribution of suppressive mechanisms to disparity selectivity. This new mechanism contributes to solving the stereo correspondence problem.


Assuntos
Percepção de Profundidade/fisiologia , Macaca mulatta , Inibição Neural/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Movimentos Oculares/fisiologia , Masculino , Modelos Neurológicos , Estimulação Luminosa/métodos
20.
Neuron ; 57(1): 147-58, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18184571

RESUMO

Sensory processing in the brain is thought to have evolved to encode naturally occurring stimuli efficiently. We report an adaptation in binocular cortical neurons that reflects the tight constraints imposed by the geometry of 3D vision. We show that the widely used binocular energy model predicts that neurons dedicate part of their dynamic range to impossible combinations of left and right images. Approximately 42% of the neurons we record from V1 of awake monkeys behave in this way (a powerful confirmation of the model), while about 58% deviate from the model in a manner that concentrates more of their dynamic range on stimuli that obey the constraints of binocular geometry. We propose a simple extension of the energy model, using multiple subunits, that explains the adaptation we observe, as well as other properties of binocular neurons that have been hard to account for, such as the response to anti-correlated stereograms.


Assuntos
Adaptação Fisiológica , Modelos Neurológicos , Neurônios/fisiologia , Disparidade Visual/fisiologia , Córtex Visual/citologia , Análise de Variância , Animais , Dominância Ocular , Macaca mulatta , Estimulação Luminosa/métodos , Campos Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...